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1. Provide a few sentences summarizing the method illustrated by the case study. 

 
This research case study explores possible limitations of current regression models in extrapolation to 
the low dose region of the dose-response curve, using epidemiological data for lead as an example, 
due to the existence of unrecognized and uncontrolled confounding. As described by Wilson and 
Wilson (2016), such confounding may arise “when the measured association between an exposure 
variable and an outcome is distorted by an effect of a third variable (called a confounding variable or 
confounder)”. Wilson and Wilson (2016) report that uncontrolled confounding may be contributing to 
overestimation of the effects of lead reported by Lanphear et al. (2005), specifically identifying 
confounding by parental education, intelligence, or household management.  
 
A major limitation in the analysis conducted by Wilson and Wilson (2016) was their inability to assess 
potential confounders due to lack of access to the original data sets (i.e., the seven longitudinal 
cohorts). As a result, they only present examples of potential confounding or reverse causation 
primarily for studies not included by Lanphear et al. (2005). In contrast, Ramboll has access to all the 
datasets used by Lanphear et al. (2005) as a result of performing additional analyses as published by 
Crump et al. (2013). In this case study, we present an initial analysis identifying confounding 
variables based on all seven longitudinal cohorts. We then propose to reanalyze the cohort data using 
the methods presented in Crump et al. (2013) while also considering the interaction among the 
identified confounding variables. This analysis, which is an expansion of the original regression 
method, should permit the determination of whether or not the interactions of these variables with the 
blood lead levels have a significant effect on the predictions in the low dose range of the dose-
response analysis.  
 
2. Describe the problem formulation(s) the case study is designed to address.  How is the 

method described in the case useful for addressing the problem formulation?  
 

Prior studies have suggested that the dose-response for lead effects on children’s IQ may be supra-
linear at blood lead levels less than 10 µg/dL. Such supra-linearity is generally not expected at lower 
doses for most environmental contaminants and may not be biologically plausible.  This case study 
examines the possible contribution of uncontrolled confounding to the reported nonlinearity of the 
dose-response. 
 
Lanphear et al. (2005) is an international pooled study of epidemiological data and is one of the key 
papers indicating that adverse effects due to exposure to lead may occur at levels below those 
previously regarded as safe. In their analysis, Lanphear et al. (2005) pooled data examining the 
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association between blood lead concentrations (BPb) in children and measures of their intelligence 
from seven longitudinal cohorts: Baghurst et al. 1992 (Port Pirie AU), Bellinger et al. 1992 (Boston MA 
US), Canfield et al 2003 (Rochester NY US), Dietrich et al. 1993 (Cincinnati OH US), Ernhart et al. 
1989 (Cleveland OH US), Schnaas et al. 2000 (Mexico City MX), and Wasserman et al 1997 
(Yugoslavia). Their overall conclusion was that “environmental lead exposure in children who have 
maximal blood lead levels < 7.5 µg/dL is associated with intellectual deficits.”  An analysis using the 
same data as Lanphear et al. (2005) was conducted by Crump et al. (2013) but with differing 
assumptions: how non-lead variables were controlled, how summary measures of BPb exposure were 
defined, and which BPb measures and transformations best modeled the data. Crump et al. (2013) 
concluded that “there was statistical evidence that the exposure-response is non-linear over the full 
range of BPb evaluated in these studies, which implies that, for a given increase in blood lead, the 
associated IQ decrement is greater at lower BPb levels.”  
 
Using the seven datasets relied upon by Lanphear et al. (2005) and Crump et al. (2013), we used 
correlation and regression analysis to explore whether any confounding existed between BPb and the 
covariates previously identified in Crump et al. (2013). Our analysis indicated that six of the variables 
examined (home score, mother’s age, marital status at time of delivery, maternal education, maternal 
IQ, and ethnicity) are likely or highly likely confounders with the BPb. Four of these variables 
(maternal IQ, home score, ethnicity, and parental education) were also considered in Wilson and 
Wilson (2016) as those characteristic variables which may have interaction effects. Birth order, birth 
weight, gestational age, sex, and alcohol use during pregnancy were not identified as confounders. 
Confounding effects of the remaining variable, tobacco use during pregnancy, was inconclusive.  
 
In the next phase of our analysis, we plan to include the six variables identified as likely or highly 
likely to be confounders (i.e., home score, mother’s age, marital status at time of delivery, maternal 
education, maternal IQ, and ethnicity). Modeling of the data will follow the same steps as performed in 
Crump et al. (2013) using the database as identified in that publication with the inclusion of the 
interaction terms. Linear, log-linear and log(BPb+1) curves will be fit to the combined studies and 
used to predict the blood lead levels at which a deficit in IQ can be seen. Models will be fit using all the 
pertinent measures for blood lead. 
 
Models will start with the basic regression used by Crump et al. (2013), for example: 
 

IQ = β × lnc + p1_i × site +  p2 × bwgt + p3_i × site × momiq +  p4_i × site × medu +   
p5_i × site × site_cigs +  p6_i × site × site_alc + p7_i × site × home + p8 ×  bo 
 

This example shows the regression used by Crump et al. (2013) to estimate the IQ value using the 
following variables: 

Lnc = log of the concurrent blood lead (lnc = log(concurrent + 1)) 
site = treated as category value so that each of the 7 sites has a unique parameter (p1_i with 

i = site) associated with it (1=Boston, 2=Cincinnati, 3 = Rochester, 4 = Mexico, 5 = 
Yugoslavia, 6 = Cleveland and 7 = Port Pirie).  This variable serves as a site-specific 
background IQ level. 

Bwgt = birth body weight 
Momiq = site specific mother’s IQ 
Medu = site specific mothers education level 
Site_cigs = site specific indicator of cigarettes smoked during pregnancy 
Site_alc = site specific indicator of alcohol consumed during pregnancy 
Home = site specific HOME scores 
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BO = birth order 
β and Pj or Pj_i_i (j=1,8, and i = 1 to 7) = regression model parameters   
 
 
To this equation the following variables would be added: 
 
+ p9_i × lnc × site × home + p10 × lnc × mage + p11 × lnc × marital + p12_i × lnc × site × 

medu +p13_i × lnc × site × momiq + p14 × lnc × ethnicity 
 
Where: 
Mage = mother’s age 
Marital = yes/no was mother married at time of birth 
Ethnicity = white or non-white 
Pj or Pj_i_i (j=9,14, and i = 1 to 7) = regression model parameters   
 
 

Each of these additional parameters are confounders with the blood lead variable (lnc). Therefore, 
when interpreting the relationship between IQ and the blood lead levels, these additional model 
parameters and the associated regression parameters will be considered in calculating the effect of the 
blood lead levels on IQ. 
 
The general problem with ultra low dose extrapolation is the possibility of uncertainty in the effect 
associated with the main exposure variable.  As stated by Wilson and Wilson (2016) “(I)nadequate 
correction of confounding has contributed to incorrect conclusions regarding causality at low levels of 
lead.”   
 
A more detailed description of the initial identification of potential confounding variables and 
preliminary results can be found in the Appendix. 

 
 
3. Comment on whether the method is general enough to be used directly, or if it can be 

extrapolated, for application to other chemicals and/or problem formulations.  Please 
explain why or why not.   

 

Meta-analyses of epidemiological studies are increasingly being used to demonstrate low dose adverse 
effects. In any case where uncontrolled confounding could occur an expansion of typical regression 
analyses may need to examine the effect of adding additional variables on the exposure parameter. 
Whenever the outcome variable has multiple factors that directly affect the incidence, and some of 
those factors also influence the exposure variable, such confounding may occur. For example, as in 
the current case, mother’s IQ may influence both child’s IQ and child’s blood lead level. Other 
examples where the measured association between an exposure variable and an outcome at low doses 
could be distorted by an effect of a third variable include lead exposure and cardiovascular disease, 
fine particulate matter and cardiovascular disease or pulmonary function, and aggravation of asthma 
by ozone and fine particulate matter.  

The methods used to identify the covariates are general enough that they can be applied to other 
studies using the study specific variables when covariates are available and confounding with one or 
more covariates is expected.   
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4. Discuss the overall strengths and weaknesses of the method. 
 

This method provides a powerful approach to critically examine key conclusions about the use of 
epidemiological data to predict dose-response in the low dose region of the dose-response curve. This 
is a newly identified potential problem, so additional methodological development may be needed. A 
key weakness is related to the data needs as described below.  

 

5. Outline the minimum data requirements and describe the types of data sets that are 
needed. 

 
Application of this method requires access to full data sets, and the studies included must have 
reported robust exposure data with many characteristic variables. In addition, there must be a large 
number of subjects in the data as there may need to be a number of regression parameters estimated 
by the regression equations. 

 
Does your case study: 
 

A. Describe the dose-response relationship in the dose range relevant to human 
exposure?  

 
Yes, this method is focused on low dose extrapolation in the range of concentrations most relevant to 
exposures of sensitive populations. Specifically, this method proposes to incorporate additional factors 
in such low dose extrapolations to ensure that confounding factors do not result in distortion of the 
low dose dose-response. 

 
B. Address human variability and sensitive populations?   
 

Yes, this method relies on epidemiological data that examines a large number of people with variable 
characteristics and sensitivities. For example, lead is a well-known problem in some populations of 
more highly exposed children. Our work, and that of the authors of the underlying studies, directly 
addresses this known sensitive population. Variability is inherently considered due to the need for data 
from large studies or multiple studies to examine multiple regression parameters. 

 
C. Address background exposures or responses?  
 

Yes, this method relies on epidemiological data that includes background exposures and responses. In 
fact, the primary goal of the method is to more robustly account for background exposures and 
responses in dose-response analyses. 
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D. Address incorporation of existing biological understanding of the likely mode of 
action?  

 
Likely mode of action is not directly considered. Indirectly, alterations to our understanding of the 
correlation of exposure measures such as blood lead levels with health effects at very low doses may 
inform arguments about mode of action.  

 
E. Address other extrapolations, if relevant – insufficient data, including duration 

extrapolations, interspecies extrapolation?  
 

No other extrapolations are relevant in this instance, as the method is applicable to epidemiological 
data.  Insufficient data are often a problem with epidemiology studies, but this method can be applied 
after any adjustments for missing data are made. The problem of differences in data collected at 
different sites can be accommodated by using site specific variables as was done in Crump et al. 
(2013). The method can also be applied to multiple exposure measures as a means of examining 
duration directly, for example, Crump et al. (2013) included concurrent BPb, peak BPb, BPb at 24 
months, mean lifetime weighted BPb, and early (6 months to 24 months) mean weighted BPb as 
exposure measures. 

 
F. Address uncertainty?  
 

The focus of this method is on examining a possible source of uncertainty that has been overlooked in 
prior studies using regression models with epidemiological data to extrapolate to the low dose region 
of the dose-response curve. While existing regression models may account for covariation with multiple 
characteristic variables, they have not accounted for the existence of unrecognized and uncontrolled 
confounding, where a characteristic variable may distort the measured association between an 
exposure variable and an outcome. Thus, our model may serve to reduce the uncertainty of the models. 

 
G. Allow the calculation of risk (probability of response for the endpoint of interest) in 

the exposed human population? 
 

The focus of this method is on examining previously unrecognized and uncontrolled confounding in 
prior studies using regression models with epidemiological data to extrapolate to the low dose region 
of the dose-response curve. As such, this method is expected to increase the accuracy of risk 
calculations based on low dose dose-response estimates.  

 
H. Work practically?  If the method still requires development, how close is it to 

practical implementation?  
 

This method is expected to work practically in the specific case to which it is being applied, i.e., for low 
dose extrapolation of the dose response curve based on a large number of data rich epidemiological 
studies of lead exposures and IQ. The method is also expected to be generalizable to other chemicals 
or constituents with a large number of data rich epidemiological studies where the possibility of 
confounding exists, and the pertinent covariates are available for the study. Determination of whether 
the method can be incorporated into standard dose-response analyses awaits further development.  
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APPENDIX 
 
DATA 
Each of the studies used by Lanphear et al. (2005) and Crump et al. (2013) followed a cohort of 
children from birth and measured levels of lead in their blood at certain defined times. From time to 
time their intellectual development was measured along with other variables that might affect or 
correlate with that development. We used the BPb levels and twelve characteristic variables (home 
score, mother’s age, marital status at time of delivery, maternal education, maternal IQ, ethnicity, 
birth order, birth weight, gestational age, sex, alcohol use during pregnancy, and tobacco use during 
pregnancy) reported in the cohort studies to determine if any of the characteristic variables could 
potentially confound the results reported in Lanphear et al. (2005) or Crump et al. (2013). Several of 
the characteristic variables (home score, maternal education, maternal IQ, maternal alcohol use, and 
maternal smoking) have been defined as site-specific due to being defined or measured in different 
ways in different studies (Crump et al. 2013).  

 
METHODS 
Correlation 
A correlation analysis was conducted to identify which of the characteristic variables, if any, were 
significantly correlated with both the reported IQ of the children and the BPb concentrations. Being 
correlated with both provides an indication that the characteristic variable has an effect on both the 
final outcome (IQ) and the expected cause of the final outcome (BPb). The Spearman and Pearson 
correlation procedures provided in SAS were used to evaluate whether correlation exists between the 
characteristic variables and the exposure parameter variables. Eleven exposure variables were 
evaluated (IQ, concurrent BPb, peak BPb, lifetime weighted mean BPb, BPb at 24 months of age, early 
weighted mean BPb, and the natural logs of the BPb values). 

For those variables identified as having continuous results (e.g., birth order, birth weight, gestational 
age, home score, mother’s age, maternal education, and maternal IQ) the Pearson correlation was 
applied while for those having categorical results (e.g., marital status, race, and sex) the Spearman 
correlation was applied. Different types of responses were specified for the alcohol and tobacco use 
during pregnancy variables. In these cases, the Pearson or Spearman correlation was used where 
appropriate for each of the individual locations. 

Regression Modeling 
In addition, a second analysis was conducted using the SAS multi linear regression procedure, PROC 
GLM to identify confounding variables. Using PROC GLM we evaluated the association between a given 
exposure variable and the outcome and the effect on that association when an additional independent 
variable is added to the regression. Our regression model consisted of the dependent variable, child’s 
IQ (iq) and the independent variable natural log of concurrent lead (lnc1). Therefore, our initial model 
would be: 

 

                                                           
1  Both Lanphear et al. (2005) and Crump et al. (2013) identified concurrent lead as the best statistical descriptor of the exposure 

response. Crump et al. (2013) states “this analysis, and particularly the results after eliminating influential points, supports the 
choice of concurrent BPb as providing the best description of the exposure-response curve.” 
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where b0 is the variable representing the intercept and b1 is the estimated regression coefficient 
quantifying the association between iq and lnc. The resulting b1 was then compared to a  produced 
when each of the characteristic variables were individually included in the model, as an example: 

 

If the percent change between the b1 and estimates is greater than ±10% then that characteristic 
variable is considered to be a confounder. Note that those characteristic variables considered to be 
site-specific are evaluated by combining the site variable (location) with the characteristic variable, as 
an example: 

 

 
PRELIMINARY RESULTS 
The variables ethnicity (race), home score (home), marital status (marital), mother’s age (mage), 
mother’s education (medu), and mother’s IQ (momiq) were identified as potential confounders due to 
their significant correlation with both the child’s IQ and natural log of concurrent lead (lnc) 
concentrations. When evaluated using regression modeling, the characteristic variables ethnicity 
(race), home score (home), marital status (marital), mother’s education (medu), and mother’s IQ 
(momiq), were identified as confounders. Table 1 provides a summary of the confounder identification 
using the following designations:  

• Unlikely – variables that were not identified in the regression analysis as resulting in a percent 
change of greater than ±10% in the beta estimate but which were identified as having 
correlation for specific-sites in the correlation analysis. 

• Likely – variables that were either identified as potential confounders in the correlation 
analysis or identified in the regression analysis as resulting in a percent change of greater 
than ±10% in the beta estimate, but not both. 

• Highly Likely – variables both identified as potential confounders in the correlation analysis 
and identified in the regression analysis as resulting in a percent change of greater than ±10% 
in the beta estimate. 

Wilson and Wilson (2016) considered maternal IQ, home score, race, and parental education as those 
characteristic variables which may have interaction effects. This analysis confirms that all those 
variables can be potential confounders using the data from the Lanphear et al. (2005) and Crump et 
al. (2013) analyses. Therefore, any reanalysis of the cohort data using the method’s presented in 
Crump et al. (2013) should consider the interactions among the confounding variables identified in 
this analysis, particularly ethnicity, home score, marital status, mother’s education, and mother’s IQ 
as these were identified as potential confounders in both the correlation analysis and regression 
modeling. 



9 
 

 

Table 1. Characteristic variables confounder identification based on both 
correlation and regression analyses 

Variable Name Description Confounder Identification 

bo Birth order No 

bwgt Birth weight No 

gage Gestational age No 

home Home score with fewest missing Highly Likely 

mage Mother’s age Likely 

marital Marital status at delivery Highly Likely 

medu Maternal education Highly Likely 

momiq Maternal IQ Highly Likely 

race Ethnicity Likely 

sex Gender of child No 

site_alc Alcohol use during pregnancy No 

site_cigs Tobacco use during pregnancy Unlikely 
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